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DESIGN OF OPTIMAL TRACKING DISCRETE

CONTROL SYSTEM

Y. Bar-Ness and J. Feinstein

Abstract

Output feedback with a series compensator is considered

for controlling SISO discrete systems. MSE criterion of

design is used in tracking a given input sequence. The plant

can be unstable and/or nonminimum phase, while the compensator

is constrained to be physically realizable and closed-loop

configuration is both stable and physically realizable. Using

variational methods the required compensator is found, and

shown to be the necessary and sufficient optimal solution.
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I. Introduction.

The design of a discrete system to track a given input

sequence is an important problem. The use of the minimum

squared error (MSE) as a criterion of performance in such

problems is well accepted. Kue[ I] in treating this problem,

did not take into consideration either the system configuration

or the plant properties, so that in his solution the closed-

loop may be unstable and the compensator obtained might not be

physically realizable.

In this paper, output feedback together with a series

compensator is considered for controlling the system to obtain

the desired objective. This procedure is particularly suitable

if the required compensator is constrained to be physically

realizable and the resultant closed-loop system is to be

both stable and physically realizable.

Consider the physically realizable plant transfer function

G(z) = P+(z)P(z)
q (z)q (z)

+ +

where p and q are polynomials whose zeros are located

inside the unit circle and p and q are polynomials whose

zeros are located outside this circle.

System is physically realizable iff the difference between
the degrees of its transfer function's denominator and
nominator, Z2.), is not less than zero.



-2-

For the given input sequence U and its corresponding
k

output sequence Wk the squared error is given by,

00 00

J e (Uk-Wk). (2)
k=O k=O

Using Parseval's theorem, we get

J j 1 E(z)E(z 1  ) dz (3)
2nj Tz

where

E(z) = U(z) - W(z) = e z-k (4)
k=O

is the z transform of the error sequence.

Denoting the closed-loop transfer function by T(z), we

have

E(z) = (l-T(z))U(z) (5)

with

T(z) = G(z)D(z) (6)
T+G(z)D(z)

where D(z) is the compensator transfer function that has to

be obtained such that the squared error is minimized.
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To solve the minimization problem, it is possible to use

the Wiener filter approach and find T(z). T(z) may even be

required to be a physically realizable solution. Nevertheless,

with T(z) available, the required compensator is obtained

from equation (6)

D~z = 1 T(z)
D(z) I-T(z) (7)

Clearly, D(z) must cancel some of the zeros or poles of the

plant G(z), which might be outside the unit circle, thus

yielding an unstable closed-loop system. To cope with the

problem of zero cancellation in the continuous case,

Newton [2 ] and, later, Bongiorno [3 and Weston[4] restricted

the plant to be asymptotically stable. Instead, as is done

in this paper, it is reasonable to require that D(z) is

allowed to cancel only those poles and zeros of G(z) which

are inside the unit circle. That is

D(z) = q (z)a(z) (8)
p (z) (z)

where a.(z) and (z) are polynomials, yet to be determined.

To obtain these polynomials we define an appropriate

variational problem on a space of polynomials such that it

takes into account the requirements.that D(z) be physically

realizable and that T(z) is both stable and physically
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realizable. From the solution of the variation problem we

obtain the necessary and sufficient condition which D(z) -

in particular OL(z) and O(z) - has to satisfy. It turns

out that for D(z) to be the required optimal solution, a(z)

and 6(z) must satisfy some polynomial equation whose para-

meters are easily obtained from the input transform U(z)

and the plant G(z) - see Theorem 4.6. Furthermore, we show

that under a certain polynomial degree condition, the solution

of this polynomial equation, .(z) and O(z), is unique - see

Lemma 4.4. With this, D(z) is the required optimal compensator -

see Theorem 4.7. Finally, we calculate the value of the

optimal performance for comparison purpose. Two examples

supplement the theoretical results.

Although we consider the case of a given input sequence,

nevertheless, it is possible to extend this work to the case

when the input includes noise or distrubances with a given

spectral density.

Youla et al [5 ] treated a related problem for the con-

tinuous case, and (as in this work) the plant was allowed to

be unstable and/or nominimum phase. In addition to the funda-

mental difference between the discrete and continuous systems,

Youla's work differs from ours in several respects. The

approaches are quite different. Youla's paper uses spectral

factorization and some of the implicit assumption, might be

rather restrictive (e.g. assumption 6). Secondly the resultant

controller might be physically unrealizable depending on the



given input or plant, a situation which might also be con-

sidered restrictive, particularly if flexible implimentation

of this controller is required (see [5] foortnote on page 7).

Finally, Theorem 1 of Youla constitutes only a necessary

condition. Another reference which may be mentioned is

[6]Volgin , who discussed the problem without adequately

S solving it.

II. Stating the Problem.

Consider the discrete control system with output feedback

and a series compensator. Let the plant G(z) be given by

equation (1). For a given input sequence Uk, it is required

to find the polynomials ct(z) and (z) of the compensator

D(z) (equation (8)), such that:

(1) D(z) is physically realizable.

(2) The closed-loop transfer function T(z) (equation (6))

is stable and physicall realizable.

(3) The sequared error between the given input sequence

Uk and its corresponding output seqience Wk is

minimized. (Equivalently, the cost functional of

equation (3) is minimized.)

III. On the Constraints of the Variational Problem.

First, we consider some results related to the constraints

of the variational problem. In terms of the polynomials a(z)

and a(z), the closed-loop transfer function is given by



T(z) =P (z)a(z) (9)

where,

*1
v(z) p (z)c'(z) +q (z)O(z). (10)

Propcsition 3.1: For T(z) to be physically realizable it is

necessary and sufficient that the degree 6v  of the polynomial

v(z) in equation (10) satisfies

6v = max(6p ,6 q ) (1)p q S

Proof: From equation (9), if T(z) is physically realizable,

then

2T A6 v - 6 a > 0

(12)

#> 6v >6p

From equation (10)

6v = max(6 ,6 ) if 6 a 6

<6 =6 if 6 =6
pca q p cO q

and together with equation (12) the result follows. The other
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direction of our claim is obvious.

Proposition 3.2: Assume that the plant G(z) is physically

realizable, then

(a) For both the closed-loop transfer function T(z) and

the compensator D(s) to be physically realizable it is

necessary that

v = G q , (13)

in which case,

T G + ZD (14)

where k. is the excess denominator-nominator zeros.

(b) On the other hand, if

6v  6_ >p6 (13)

and

£T > (15)

Then both T(z) and D(z) are physicall realizable.
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Proof: (a) Using the fact that G(s) is physically realizable

we have from equation (1)

+ 6 -(6 + 6 ) > 0 (16)
-q q P P

Similarly D(z) is physically realizable implies

+ 6 (6 + + 6") > 0. (17)
P q

These two equations together yield

6 +6 6 = 6 _> 6 _ = 6 + 6c.(8

q q B p-a p

But, by Proposition 3.1, for T(z) to be physically realizable

it is necessary that

6v  max(6 6 ) (19)
pu q

and, together with equation (18), the claim follows.

Furthermore, adding equations (16) and (17), we have

k G + j D = 6-6 = 6 a A Z'

(b) From equation (13) and Proposition 3.1, T(z) is

physically realizable. Also, by equation (13)



2T = 6 + 6 - C6 + 6 ).

T q +p+

and together with equation (15), using equation (16) for kG'

yield
I1

6_ +6 (6 - + 60c) > 6 + + 6 _ - (6 + + 6 ) > 0
q P q q p P

S6 B +6 + - (6a + 6 +) > 0.
P q

Hence, using equation (8), D(z) is physically realizable.

IV. The Solution of the Variational Problem

For any given polynomial x(z) of degree 6 ( let

6

x(z) A z x x(z -1 (20)

n
If x(z) = . z a n 0 6 = n, then clearly

i=0 n x

n . n
z(z) = n i azni Also, if x(z) has no zeros

i=0 1 i=0 1

at z = 0 (i.e., a0  0), then

6-= 6 . (21)x x

Proposition 4.1: Let D(z) be a rational function of z whose

aero and poles are symmetrically located with respect to the
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Sr unity circle, i.e.,

(z) = U(z)U(z -1).

Then, it is possible to factor 4(z)

j (z (z) t (Z) (22)
~~(z+ -(z)P (z)

+ + ( ) - Z

where the zeros of T+ and P are located inside the unit

circle and those of T and P are outside it, such that

T+(z) = tE (z) (23)

P (z) = P (z) (24)

and

6 += + (25)
T P

Proof: See Appendix A, claim (A-1).

We are now in a position to set the proper variational

problem. Substituting equation (5) into equation (3) yields

- 2T.1 (I-T(z)) (1-T(z-)),(z) dz (26)

where T(z) is given by equations (9) and (10) and 4(z)
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by equation (22). Therefore,

j 2 q (z) (z) q-(z-1 ) (z - ) -i+(z)T-(z) dz

v(z) v(z - ) p-(z)p-(z) z

Using equations (20) and (21) we have

- 1 q - (z)a(z) ql(z)(z) T[(z)yE(z) dz (27)
2Tj v(z z(z) P (z)P- (z) z

Hence, J can be considered as a functional on the linear

space P of pairs of polynomials (a(z),O(z)), which is

defined in Appendix B. With the norm

6a  6

II(a, )II = max( 0 ti[, . [ i )  (28)
i=O i=O

defined on P, it can be shown that (see Appendix B) J is a

differentiable functional on P whose first variation is given

by

J[h-h (z) (z (Z) T + (Z)_)(Z) z k((Z)hl(Z)
2] lv(z)l] p+(z)p-(z)

(29)
z- dz

- (z)hz( z

where h1  and h 2  are the variation of a and 8.

Lemma 4.2: Consider the linear space P, defined in Appendix B

with the norm of equation (28). If
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> 6 + 6 (30)
q

and

6 q > 6 p(31)

then for (a E P to be extremum of the Cost functional of

equation (26), it is necessary that

c(z) = 2+ z zFZ-Z)[()1(~ (32)
v(z)[v(z)] 2p+ (z)p (z)z

where

v(z) = p (z)ct(z) + q-(z)$(z) (33)

has no poles inside the unit circle.

Proof: For J to have an extremum at (c,)£P, the

variation of equation (29) must vanish for every polynomial

increment hl(z) and h2 (z). Define

A(Z) A p (z)q (z)3(z)T4 . (z)T (z)p (z)z /d(z)

and
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r

B(z) A zv(z)q+(z)/d(z)

so that A(z) and B(z) have no common zeros (i.e., d(z) is

the corresponding g.c.d.). Also, let

p(z) A ( (z)h1 (z) - a(z)h 2 (z)).

The polynomials v(z) and P-(z) have no zeros inside the

unit circle and can be disregarded. Clearly,

V
B  < 1 + 6v  + +. (34)

For a given a(z) and (z), hl(z) and h2 (z) can be selected

such that p(z) could have zero of order v < 6 + 6 anywhere

in the complex plane, and particularly, inside the unit circle.

From equations (30), (31), (34) and since 6 + = 6+, by
p

equation (25) we deduce that 6p > 6- 1. Applying Lemma B-2

our claim follows.

Lemma 4.3: Assume that the closed-loop transfer function T(z)

is stable; then for every £T > 0, for c(z) to be analytic

inside the unit circle, it is necessary that

v(z) = I (z)p (z)q (z)z (35)

+f3(z) = zp (z)1r(z) (36)
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-414

where R(z) is some polynomial which is together with x(z)

must satisfy the following equation

p(z)u,(z) + q-(z)zP (z)I(z) ' +(z)p-(z)q-(z)z (37)

If, furthermore,

v = q 6 p (38)

then it is necessary that

61 = 6 + - 1 (39)

and

=6 + +6 (40)
q

where T A 6  -6

On the other hand, if c(z) and 7(z) are a polynomial

pair solution to equation (37), then with 6(z) as in (36),

c(z) is analytic inside the unit circle.

Proof: For T(z) to be stable v(z) must contain only zeros

inside the unit circle. Since kT might be zero then for

c(z) to be analytic inside the unit circle we must have
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IT

v(z)zP +(Z)1(z) = T(z)p(z)q-(z)T+(z)z (41)

for some polynomial f(z). Substituting equation (33), and re-

arranging terms, we have

6T

-(z)EV(z)-(z)T (z)z T zq (z)P+(z)Tr(z)]

(42)

= p (z)(X(z)7(z)P+(z)z.

Since a(z) and p-(z)a(z) are relatively prime and 7(z) is

arbitrary, equation (36) follows. And consequently, from

equation (42) ff(z) must satisfy equation (37). Substituting

equation (36) in equation (37) results in equation (35).

Furthermore, using equation (38) we have

6 : 6 - - 6 _ (43)
v q

Since p (z) and q (z) have no zeros inside the unit circle,

6 =6 - and 6 = 6 q, and from equation (35) we have
p- p" q q

6 =6 + 6 + 6 + 6 (44)
v + P q (

Also, from equation (36) we have

6 6,. (45)
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Combining equations (43), (44) and (45) and using equation (25),

equation (39) follows. Also, from equation (9)

6 6 -6T-v P

and substituting for 6 from equation (44), equation (40)
Iv

follows after simple manipulations.

On the otherhand, if we pick ff(z) and c(z) to be a

solution of equation (37) and take a(z) as in equation (36),

then clearly v(z) will have the form of equation (35) and

using equation (32) c(z) is obviously analytic inside the

unit circle.

Lemma 4.4: The solution pair of polynomials v(z) and a(z)

of equation (37),

p (z)a(z) + q-(z)zp+(z)(z) = T+(z)p-(z)q-(z) (37)

which satisfy

=6 +6 - (39)

p

=6 + 6
-t q

is unique for all k.T > 6G
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Proof: Assume that I+ (z)p (z)q (z)z and zp (z) are

relatively prime. To solve equation (37) for the unknown

polynomials OL(z) and R(z), notice that the number of

unknowns (the coefficients of these polynomials) is

n1 = 6T + 6 + 2. Using equations (39) and (40)

= T - + 8 + + + 6 + 1. (41)
p q

On the otherhand, the number of scalar equations obtained by

equating the coefficients of different powers is given by the

degree of the polynomial on the left

n 2 = + + 6_ + 6 + T 1. (42)
p P

Since, 6 =6 and 6_ = 6 it follows that n I 
= n 2.

P p q q

Now, the polynomials p (z) and q (z)zi(z) are

relatively prime and hence their resultant is nonzero, and the

matrix of the coefficients is nonsingular. his ensures the

existence and uniqueness of the solution.

If the polynomials T+(z)p (z)q (z)z and zP (z) are

not relatively prime, we denote their g.c.d. by d(z). Let

c(z) = d(z)W(z)

zP (z) : d(z)P (z). (43)

... .. . ... . .. . ... ._- . ". . . ! .. * ~ £ ~ . ... i. - -4 .- ,
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T (z)p-(zj't-(z)z = d(z)v'(z). (44)

Equation (37) thus becomes

p (z)c'(z) + q'(z)P'(z)(z) = V'(Z).

This leaves the number of equations and unknowns equal and,

therefore, the previous argument of existence and uniqueness

for the pair a(z) and ff(z) follows.

Lemma 4.5: If

c(z) = q (z) (z)p (z)q (z)T((z)) (z)z
v(z)[v(t)]Z p+()p()-(z)z

is analytic inside the unit circle, then the second variation

of the cost functional of equation (26) is given by

2 [v (z) ] 2  (v (z)] 2  (45)

[ (z)hjz) - c(z)h 2 (z)l[t(z)h (z) - a(z)h 2 (z)]dz

and is positive semidefinite.

Proof: Notice that the integrand of the first integral of

equation (B-11) in Appendix B equals c(z)/(z). Therefore, it

is analytic inside the unit circle and the integral is zero for
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every selection of hl(z) and h 2 (z). The second integral of

equation (B-11) which is given in equation (45) can be rewritten

in the form (see also equation (B-5))

22 1 n i[TljPz)]L[T(z-1 )](z)dz (46)

Using Parseval's theorem, equation (46) can be represented as

F 2
a sum of squares, hence P J[ ] is positive semidefinite.

Finally, our results can be summarized as follows.

Theorem 4.6 (necessary condition): Let the input sequence for

the discrete control system with output feedback be Uk and its

z-transform U(z). Define

cD(z) A U(z)U -l(z) = +(Z)-(Z) (22)

_ (z) p (z) p (z)

If the plant is physically realizable and given by

G(z) = p+(z)p (z) (1)
q+ (z)q (z)

then for the compensator

+

D(z) = q (z)cx(z) (2)
p +(z) (z)

to be the optimal solution to the problem stated in Section II,

it is necessary that



-20-

r(z) = zp+(z)T(z) (47)

v(z) = T (z)p-(z)q-(z)z (48)

where

v(z) = p (z)ac(z) + q (z) (z), (49)

and ff(z) is a solution to the polynomial equation

p-(z)"(z) + q-(z)z (z) (z) = (z)p (z)q-(z)z

wi th

= 6 _ + kT - , (9, A 6 _ _

=6 + 6
I q

and where q ,q ,p and P- are defined by equation (20).

Proof: Using Proposition 3.2, we have

6v = 6 q > 6

and using Lemma 4.2 and 4.3 our claim follows.
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Theorem 4.7 (sufficient condition): For the discrete control

system with output feedback and physically realizable plant

as in Theorem 4.6, let ff(a) and a(z) be the solution of

- -+ + -T

p (z)a(z) + q (z)zP (z) (z) = (z)p (z)q(z)z (37)

satisfying

6 =6_ + 6T -

p

6 = 6 6
U +

I q

where ZT > 0 and the different polynomials are specified in

Theorem 3.9.

Let

(z) : zp (z)1I(z) (so)

then using

D(z) = + (z)cx (z) (51)

p+ (z)g(z)

as a series compensator, the closed-loop system is stable, the

first variation will vanish and the second variation is positive

semi-definite for all increments in a(z) and (z). If,

furthermore, ZT is chosen so that kT > 9G, then D(z) is also
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physically realizable.

Proof: First using Lemma 4.4, the pair a(z), and 7(z) is

unique. From equation (8)

T(z) - p (z)o'(z)v (t

where v(z) is

v(z) =+(z)P (z)4-(z)zT (52)

duc to the way (z) is selected. Hence, T(z) is stable, and

6 =6 + +T6 +
v T q p

By Lemma 4.3, c(z) (equation (32)) is analytic inside the in

unit circle and, by equation (29), the first variation is zero.

Also, by Lemma 4.5 the second variation of equation (53) is

positive semidefinite for all increments of the polynomials OL(z)

and a(z).

Now, by our choice of f(z),a(z) and consequently of

(z)

6 + 6 + + (6 + kT - 1)
q q p p

6 -6 +6 +66pa p 1 q
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Therefore, using 6 + = 6 + and Z T > 0 we have
I P

6=6 > 6
V q p

and if we choose Z > k then, by Proposition 3.2 the
T G

compensator D(z) is physically realizable.

V. The Minimum Square Error.

For the unconstrained problem we could have used the

Wiener solution to obtain the open-loop otpimal filter. For

the case of simple poles, the optimal filter transfer function

(our closed-loop transfer function) obtained using partial

fraction expansion [1 ] has no excess of poles over zeros, i.e.,

ZT 0.

Realizing this optimal Wiener filter T(z) using series

compensator configuration, we have that

D(z) 1 T(z)
fz) G(z) l-T(z)

[lence, if kG > 0  D= -Z G and D(z) is physically un-

realizable. By increasing X T' D(z) becomes realizable

although, obviously, the cost increases. One possible physically

realizable solution can be obtained by choosing the minimal

possible Z T for which Z D = 0; that is kT= ZG' Therefore,

using Theorem 4.7,

.....
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D D(z) U a(z) q (z) (54)

where 0,(z) and Tr(z) are the solution pair of equation (37).

To find the minimum squared error, substitute equations

(50) and (52) into equation (27) to get

2Th ' (z)P (z)T (z)

-11 + -l -

q (z -1)P+ (Z- )7T(2-)T() z dz (55)
+(-l )p-Z Iz )q (z ) P+(z)P-(z) Z

where by equation (20)

4q(z 1) =z- q- q (z)

q-(z- 1) = z- -q q-(z).

Also, it is possible to prove (see Appendix A, Claim (A-2))

that

P +(Z) (Z-)

and equation (54) thus becomes
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1 ntz )n~z 1) dz

Again, with

TT (z -1) 2- 2

g and

p (z ) 2 p (z)

we have

= 1 E ( z) 7 I(z) 2. dz
27Tj ' p(z)p (z)z G

Hence,

J =XRes[- __ -- -( 1 (56)

z p (z)p (Z)

where the summation is on all the residues inside the unit

circle; i.e. at the poles of z p P(z).

VI. Examples.

(1) Consider the plant

G(z) =z-2
z -l1, 2 (z--.5)
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and the transformed step input sequence

U(z)=

From equation (1) we get,

q (z) = z - .5, q (z) =z - 1,2

p +(Z) = 1, p-(z) =z - 2

and by equation (22)

4)(Z) = Z
(z-1 (1-z)

Hence,

= Z z T-(Z) 1

P +(Z) z -1 p(Z) 1-z.

Equation (37) becomes

(z-2)ca(z) + (z-1,2)z(z-1)T(z) = z-(1-2z)(l-1,2z)*z

where we chose kT= P.G= 1. Dividing both sides by z, we

have, in the notation of Lemma 4.4,
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(z-2)cO(Z) + (Z-l,'2) (z-l)i(z) =Z(1-2z) (l-l,2z)

The unique solution of this equation that satisfies

6a, 6 - = 6 ~ +3 -1=1 and 6' = 6 + - 1=1 is

given by

IT(z) = S.7 + 2.4z

*1 ct(z) = 3. 42 - 3. 62z.

The compensator D(z) (equation (54)) is, therefore,

D(z) = (z-l/2)(3.42-3.62z)
(z-l) (5.7+2.4z)

and using equation (56), the minimum square error is

J= Res[ (5. 7+2.4z)(2.4+57z)] 17.31.
z=O z(z-2) (l-2z)
z

(2) Consider the plant

G(z) = (z-3/2)(z-2) IaI, NI <1

and the transformed sequence

U(z) =(z-3)
z-1
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For this case we have,

q (z) (z-0a)(z-O), q (z) 1

p +(Z) 1p, (z) =(z-3/2) (z+2)

T (z) =1 -3z T 1(z) =z -3

p (Z) z -1 , P(Z) 1-

and the equation to solve

(z-3/2)(ze2)0a(z) +- z(z-l)7T(z) (1-3z)(1 - 1z)(1+2z)

with 6n= 1 and 6.= 1. The unique solution can be found by

equating different powers of z, yielding

01(z) = - 3 (1+5z)

2
1(z) = .- (11+16z).

With this, equation (54) yields the compensator

D(z) =-(Z-UZ - ) l+5z)
2z (z- 1) (ll+16z)

with minimum square error J 27.55.

.........
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VII. Conclusions

Output feedback with a series compensator were considered,

in controlling the SISO discrete system to track a given input

sequence. MSE criterion of design was used in a variational

problem whose solution yielded the required compensator trans-

fer function D(z). This compensator was constrained to be

physically realizable and the resultant closed-loop system to

be both stable and physically realizable.

It turns out that for D(z) to be the required optimal

solution, it must include two polynomials a(z) and a(z)

that have to satisfy some polynomial equation whose parameters

are obtained from the input transform and the plant. On the

other hand using the solution of this polynomial equation

(which, under certain polynomial degree conditions is unique)

D(z) is the required optimal compensator. Two examples, that

were worked out, present the detailed steps required.
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APPENDIX A

The z transform of the input sequence i~given by

I K

U(z) = zL k~ ~ (A-i)
N M
11 z-b n17FFz- .)

where a., b n' k and cm are nonzero scalars, which satisfy

Jail < 1, lb nl 1, lakI < 1 and lam I < 1.

L is some integer (positive or negative). For U(z) to be

causal we must have

N + M > L + I + K. (A-2)

Hence,

(D~z A UZ)(-l

I K K I
IY(z-a-)T1V(1-0tk z)-T(z-a 0 11(1-a. z)

zS i=l k=l K=1 i =l 1A3N M M N(A)
11V(z-b n)TV(l-amz)1T(z- am)]T(l-bn Z)
n=l m=l m=l n=1

where

S = N + M - (I+K). (A-4)
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rIf we separate the poles and zeros to those inside, and those

outside the unit circle, i.e., if

+

,(z) T (z) T (z)

P+(z)- (z)

then we must have

S2 [l+sgn S]I K
T+(z) =  22- (z -a i)-11-(1-0k z )  (A-5)

i=l k=l

K I
T-(z) = -7 - (Z-akl- T-(l-aiz) (A-6)

k=l i=l

S [sgn S-1]N MP+(z) = z 2] (z-bn)-I (1-18mZ) (A-7)

n=1 m=1

M N
P (z) = IF (z- m)T- (1-b nZ). (A-8)

m=l n=l

Notice that by equations (A-2) and (A-4), S > L, so that for

L > 0, S is non-negative.

Claim A-1:

(z) = T_(z) (A-9)

p (z) = p (z) (A-10)

and

++ = 6 (A-I)

II
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Proof. By equation (20)

6
+

(Z) z + (z-1(z )

and from equation (A-S)

6S
+ - [l+sgn S] + I + K. (A-12)

Thus, using equation (A-5), we have

+ I+K-T -l K -1
(z) = z (z -ai)-T](l-XkZ ,

i=l k=l

and comparing with equation (A-6), equation (A-9) follows.

A similar proof applies to equation (A-10). Finally,

substituting equation (A-4) into equation (A-12), we have

+ f [l+sgn S] + N + M - S

S
2 [sgn S-1] + N + M

and comparing with equation (A-7), equation (A-12) follows.

Claim A-2:

P (z- ) -Cz) 1. (A-13)
p-cz)'+(z

- I1

----- -- --
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Proof. By equation (20)

+~ -1 1 z

and using equation (A-9)

-6+

T (z 1)=z (z). (A-14)

Similarly, applying equation (20) to P (z ) and using

equation (A-10) we have

P +(z- 1 2 P * P (z). (A-15)

Using equations (A-14) and (A-15), together with (A-il), yield

our claim.
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APPENDIX B

Consider the space P of pairs of polynomials

(a(z),a(z)) of degrees 6. and 6B respectively, i.e.

6

a(z) = X1z (B-1)
i=0

6

(z) = X aiz (B-2)
i=O

(where a. and 8. are numbers) such that1 1

v  = q- + 6 > 6 + 6a (B-3)

where

v(z) = p (z)a(z) + q (z) (z).

Clearly, P is a linear space

The first variation of J.

Let (h1 (z),h 2 (z)) E P be movements of (a(z),a(z)).

The corresponding increment of the functional J of

equation (26) is,
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AJ =J(ca+h 1 , +h 2  -

1 (l-T'(z))(l-T' (z -1 )(~)d
2 Ttj J'z

- 7jT (1-T(z)) (l-T(2- )IPD(z) d

where T(z) is given by equation (10) and

T )p (z) (u(z) + -h 1 (z)) (B-4)

p (z)(a(z) +1 hl(z)) + q (z)( (z) h h 2 (z))

Using Taylor's theorem we get

j 1 L Tz)I[~ -1), (zdz
2 j 71j z

1 ClTCl)fl[TCzl()dz
2T j J'z

2 Tj ~J'z

-1 tf r1T*l'))2 r[*( ],Zdz

+ 1~ p [T*(z)]li[T*(z -l)Dz - +z (B-5)

In terms of the increment polynomials hl(z) and h(),i

can be shown, that
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IiT(z) = p (z)q (z) 11[K(z)
IV(Z) I(z)]

ti 2 T(z) = -2p-(z)q-(z) 11[V(z)] P[K(z)]
[v(z) 

]

+ p (z)q (z) P 2[K(z)] '

[v(z)]

where

v(z) = p (z)ct(z) + q (z) 3(z),

Pv(z) = p (z)hl(z) + q (z)h 2 (z),

vK(z) = (z)hl(z) - (z)h

and

P2 K(z) = 0.

The (*) sybolize the fact that the corresponding terms are

evaluated at u(z) + 0 1 hl(z) and a(z) + 02h2 (z) with

0 < 01, 82 < 1. It is easy to show by substituting z -1 for

z that the first and the second integrals of equation (B-5)

are identical and so are the third and fourth. Therefore;
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-1~ (zi3z)11z p z )hq (z (z )h (z -Ldz
__ p - 1 -1 2

+ 2 -(z *(z () )-1 2 (-(z- )h (Z1 )- +q(z )h (Z))T T  v(z) [v(z- )] 3Z

-1 2 -1 ---

p ~ zi(z) q (z) p (z )q (z (z- 1 h(z- ) *q(z )h(z )

[v*(z)] [v*(z )

.*(z)h (z) - 0* () W (B-6)

where

OL () = (Z)+ 0 1 hl (z)

()= (Z) + 2 2 h 2 (z)

for some 0 < 0l 0 2< 1 and

v *(z) = p (z)cl*(z) + q-(z) *(z)

By the definition of the linear space (QL*(z), *(z)) P.

Also, 6 6 and 6[p (z)h 1 z) + q (z)h 2 (z)] 6 VS. Using

equation (20) , we have for the first integral in (B-6)
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-= 1 q -(z) (z) p -(z)q -(z) T
AJil y vz (z) q zg(6(z)h (Z

[ (z)] z

-(z)h 2(z)). (B-7)

where we used the following

26 (6 + 6 + 6 + 6B) = 2(6q_ + 65) - (6 + 6 + 6 + )
V p q Y.q p q

=6 +6 (6 + 6).
q P

4T"

For the second integral in (B-6) we have,

AJ2 - 2 q-(z*) D (z) p-(z)q-(z) (z)(Z) z2(z))
2~~ (Z) W ( (Zh(z

zT (z)h (z) - c*(z)h (zWLz (B-8)

Using the norm

6a  6

[[(hi,h2)[11 max( I Ih ij, I [h 2 il)'i=O i=O

it is possible to show that, I[(hl,h 2 ) 0 as 11(hl,h 2 ) 0.

For the second integral in (B-6) we have,
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11p-(z)q(z) Z (~-z
Ai 3 n [V* (Z)J I (z ~(Z) Iz z W h1(z) - (z)h1(z) -

( (~h()- d h z-B9

Similarly, AJ 3 /I(h 1 ,h 211 -~ 0 as 1(hl,h 2)11 0. Therefore,

the functional J is differentiable with

Ih 2  1~: zz p (zJq (z) iTZh()-
l l[] j9v2z) 4 (Z) z v ~zz)JZ

dz
-t 04 2(z)) -- (B-10)

The second variation of J. From equations (B-6), (B-7), (B-8)

and (B-9) it is obvious that the second variation of J is

22 q-z~()(z) z)(z) T(-(~lz

>c (Mz)h (Z) - &(Z)h 2 (z-

+ 12(z))zz

+ p(z)q 2 ),(z) p (z)q (z) T(~z~z ()i()

x ( (z)hl(z) - c(z)h (z (B-11)

Lemma B-1. Let A(z) and B(z) be two given relatively prime

polynomials. If

fA(z)
Bz) ii(z)dz -0
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for any P(z) of a given degree 6,, 6p > 6B -, then

A(z)/B(z) must be analytic inside the contour of integration.

Proof. By contradiction, assume that B(z) has a pole of

multiplicity V, V < 6B  inside the contour of integration,

V
i.e., B(z) = Cl(z)(Z-a) , Cl(a) / 0 for some a. Choose P(z),

to have a pole at OL of multiplicity v - 1, i.e.,

(z)= C2 (z)(z-a)V-l C2(a) $ 0. Hence, by the residue theorem

A(z) A( C2 (a). 0

B (z)dz - (0)

which contradicts our assumption.
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